Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Digit Health ; 3: 643042, 2021.
Article in English | MEDLINE | ID: covidwho-2306471

ABSTRACT

Telework has become a universal working style under the background of COVID-19. With the increased time of working at home, problems, such as lack of physical activities and prolonged sedentary behavior become more prominent. In this situation, a self-managing working pattern regulation may be the most practical way to maintain worker's well-being. To this end, this paper validated the idea of using an Internet of Things (IoT) system (a smartphone and the accompanying smartwatch) to monitor the working status in real-time so as to record the working pattern and nudge the user to have a behavior change. By using the accelerometer and gyroscope enclosed in the smartwatch worn on the right wrist, nine-channel data streams of the two sensors were sent to the paired smartphone for data preprocessing, and action recognition in real time. By considering the cooperativity and orthogonality of the data streams, a shallow convolutional neural network (CNN) model was constructed to recognize the working status from a common working routine. As preliminary research, the results of the CNN model show accurate performance [5-fold cross-validation: 0.97 recall and 0.98 precision; leave-one-out validation: 0.95 recall and 0.94 precision; (support vector machine (SVM): 0.89 recall and 0.90 precision; random forest: 0.95 recall and 0.93 precision)] for the recognition of working status, suggesting the feasibility of this fully online method. Although further validation in a more realistic working scenario should be conducted for this method, this proof-of-concept study clarifies the prospect of a user-friendly online working tracking system. With a tailored working pattern guidance, this method is expected to contribute to the workers' wellness not only during the COVID-19 pandemic but also take effect in the post-COVID-19 era.

2.
Biomed Res Int ; 2022: 3524090, 2022.
Article in English | MEDLINE | ID: covidwho-1854467

ABSTRACT

Biomedical named entity recognition (BioNER) from clinical texts is a fundamental task for clinical data analysis due to the availability of large volume of electronic medical record data, which are mostly in free text format, in real-world clinical settings. Clinical text data incorporates significant phenotypic medical entities (e.g., symptoms, diseases, and laboratory indexes), which could be used for profiling the clinical characteristics of patients in specific disease conditions (e.g., Coronavirus Disease 2019 (COVID-19)). However, general BioNER approaches mostly rely on coarse-grained annotations of phenotypic entities in benchmark text dataset. Owing to the numerous negation expressions of phenotypic entities (e.g., "no fever," "no cough," and "no hypertension") in clinical texts, this could not feed the subsequent data analysis process with well-prepared structured clinical data. In this paper, we developed Human-machine Cooperative Phenotypic Spectrum Annotation System (http://www.tcmai.org/login, HCPSAS) and constructed a fine-grained Chinese clinical corpus. Thereafter, we proposed a phenotypic named entity recognizer: Phenonizer, which utilized BERT to capture character-level global contextual representation, extracted local contextual features combined with bidirectional long short-term memory, and finally obtained the optimal label sequences through conditional random field. The results on COVID-19 dataset show that Phenonizer outperforms those methods based on Word2Vec with an F1-score of 0.896. By comparing character embeddings from different data, it is found that character embeddings trained by clinical corpora can improve F-score by 0.0103. In addition, we evaluated Phenonizer on two kinds of granular datasets and proved that fine-grained dataset can boost methods' F1-score slightly by about 0.005. Furthermore, the fine-grained dataset enables methods to distinguish between negated symptoms and presented symptoms. Finally, we tested the generalization performance of Phenonizer, achieving a superior F1-score of 0.8389. In summary, together with fine-grained annotated benchmark dataset, Phenonizer proposes a feasible approach to effectively extract symptom information from Chinese clinical texts with acceptable performance.


Subject(s)
COVID-19 , China , Electronic Health Records , Humans
3.
Am J Chin Med ; 49(3): 543-575, 2021.
Article in English | MEDLINE | ID: covidwho-1119998

ABSTRACT

Chinese medicine (CM) was extensively used to treat COVID-19 in China. We aimed to evaluate the real-world effectiveness of add-on semi-individualized CM during the outbreak. A retrospective cohort of 1788 adult confirmed COVID-19 patients were recruited from 2235 consecutive linked records retrieved from five hospitals in Wuhan during 15 January to 13 March 2020. The mortality of add-on semi-individualized CM users and non-users was compared by inverse probability weighted hazard ratio (HR) and by propensity score matching. Change of biomarkers was compared between groups, and the frequency of CMs used was analyzed. Subgroup analysis was performed to stratify disease severity and dose of CM exposure. The crude mortality was 3.8% in the semi-individualized CM user group and 17.0% among the non-users. Add-on CM was associated with a mortality reduction of 58% (HR = 0.42, 95% CI: 0.23 to 0.77, [Formula: see text] = 0.005) among all COVID-19 cases and 66% (HR = 0.34, 95% CI: 0.15 to 0.76, [Formula: see text] = 0.009) among severe/critical COVID-19 cases demonstrating dose-dependent response, after inversely weighted with propensity score. The result was robust in various stratified, weighted, matched, adjusted and sensitivity analyses. Severe/critical patients that received add-on CM had a trend of stabilized D-dimer level after 3-7 days of admission when compared to baseline. Immunomodulating and anti-asthmatic CMs were most used. Add-on semi-individualized CM was associated with significantly reduced mortality, especially among severe/critical cases. Chinese medicine could be considered as an add-on regimen for trial use.


Subject(s)
COVID-19/prevention & control , Drugs, Chinese Herbal/therapeutic use , Hospitalization/statistics & numerical data , Medicine, Chinese Traditional/methods , Registries/statistics & numerical data , SARS-CoV-2/drug effects , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , China/epidemiology , Drugs, Chinese Herbal/classification , Epidemics , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL